Annotating data selection for improving machine translation
نویسندگان
چکیده
In order to efficiently improve machine translation systems, we propose a method which selects data to be annotated (manually translated) from speech-to-speech translation field data. For the selection experiments, we used data from field experiments conducted during the 2009 fiscal year in five areas of Japan. For the selection experiments, we used data sets from two areas: one data set giving the lowest baseline speech translation performance for its test set, and another data set giving the highest. In the experiments, we compare two methods for selecting data to be manually translated from the field data. Both of them use source side language models for data selection, but in different manners. According to the experimental results, either or both of the methods show larger improvements compared to a random data selection.
منابع مشابه
Annotating Honorifics Denoting Social Ranking of Referents
This paper proposes an annotating scheme that encodes honorifics (respectful words). Honorifics are used extensively in Japanese, reflecting the social relationship (e.g. social ranks and age) of the referents. This referential information is vital for resolving zero pronouns and improving machine translation outputs. Annotating honorifics is a complex task that involves identifying a predicate...
متن کاملAnnotating Cognates and Etymological Origin in Turkic Languages
Turkic languages exhibit extensive and diverse etymological relationships among lexical items. These relationships make the Turkic languages promising for exploring automated translation lexicon induction by leveraging cognate and other etymological information. However, due to the extent and diversity of the types of relationships between words, it is not clear how to annotate such information...
متن کاملData Selection With Fewer Words
We present a method that improves data selection by combining a hybrid word/part-of-speech representation for corpora, with the idea of distinguishing between rare and frequent events. We validate our approach using data selection for machine translation, and show that it maintains or improves BLEU and TER translation scores while substantially improving vocabulary coverage and reducing data se...
متن کاملImproving Statistical Machine Translation using Lexicalized Rule Selection
This paper proposes a novel lexicalized approach for rule selection for syntax-based statistical machine translation (SMT). We build maximum entropy (MaxEnt) models which combine rich context information for selecting translation rules during decoding. We successfully integrate the MaxEnt-based rule selection models into the state-of-the-art syntax-based SMT model. Experiments show that our lex...
متن کاملSFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy
In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....
متن کامل